REPAIRING IATROGENIC ROOT PERFORATIONS
ALI BEHNIA, HOWARD E. STRASSLER and ROBERT CAMPBELL
J Am Dent Assoc 2000;131;196-201

The following resources related to this article are available online at jada.ada.org (this information is current as of February 27, 2009):

Updated information and services including high-resolution figures, can be found in the online version of this article at:
http://jada.ada.org/cgi/content/full/131/2/196

This article appears in the following subject collections:
Practice Management http://jada.ada.org/cgi/collection/practice_management

Information about obtaining reprints of this article or about permission to reproduce this article in whole or in part can be found at:
http://www.ada.org/prof/resources/pubs/jada/permissions.asp
Post placement may be indicated for restoring endodontically treated teeth. Sorensen and Martinoff indicated that indiscriminate placement of a post in every endodontically treated tooth is unrealistic. When clinicians decide to place a post to retain a core buildup when restoring a pulpless tooth, they need to consider planning for the location, length, shape, post design and placement method.

The anatomical features of the root—including radicular considerations of root anatomy from a radiographically evident mesiodistal view, as well as the anatomical variations from a facial-lingual standpoint—also influence post preparation and placement. Even on a periapical radiograph, the presence of invaginations or laminations of the roots may not be evident. Care must be taken when preparing excessively long posts, especially if the root tapers rapidly in the apical area. Also, the clinician must be aware of any root curvatures as this has a direct influence on post length.

Even with all the factors that must be taken into account when deciding where to place a post, how to prepare the canal and what technique to use, poor clinical judgment still may result in improper orientation of the post space and iatrogenic perforation of the root canal into the attachment apparatus of the tooth. This error is compounded when the clinician is unaware of the mistake and proceeds with the post placement in the perforated root site. The clinical results of this action may go undiscovered until radiographic or clinical evidence of an infection is apparent. The evidence might be the presence of a sinus tract, an abscess or a radiolucency in the area of the perforation.

Post perforations resulting from iatrogenic tooth preparation can be repaired in a variety of ways. The defect can be accessed nonsurgically, surgically or both. It then can be repaired by filling the defect of a circumscribed radiolucent lesion associated with the distal midroot area and a periapical radiolucency. Based on the radiograph, the authors suspected that the canal preparation for the post and the post placement had perforated the root at the base of the post.

Clinical Implications. The authors used a combined surgical and orthograde approach with a biocompatible restorative material and a clear, plastic light-transmitting post to repair the iatrogenic perforation.

Background. Post preparation is an integral part of restoring endodontically treated teeth in indicated cases. Iatrogenic perforation of the root can result from preparing post space and can severely compromise the prognosis of the tooth.

Case Description. Two years after a patient’s maxillary lateral incisor was restored with a post-retained composite resin, he went to a dental school emergency clinic with a chief complaint of soft-tissue swelling adjacent to the tooth. The authors took a periapical radiograph that revealed evidence of a circumscribed radiolucent lesion associated with the distal midroot area and a periapical radiolucency. Based on the radiograph, the authors suspected that the canal preparation for the post and the post placement had perforated the root at the base of the post.

Clinical Implications. The authors used a combined surgical and orthograde approach with a biocompatible restorative material and a clear, plastic light-transmitting post to repair the iatrogenic perforation.

ABSTRACT

Background. Post preparation is an integral part of restoring endodontically treated teeth in indicated cases. Iatrogenic perforation of the root can result from preparing post space and can severely compromise the prognosis of the tooth.

Case Description. Two years after a patient’s maxillary lateral incisor was restored with a post-retained composite resin, he went to a dental school emergency clinic with a chief complaint of soft-tissue swelling adjacent to the tooth. The authors took a periapical radiograph that revealed evidence of a circumscribed radiolucent lesion associated with the distal midroot area and a periapical radiolucency. Based on the radiograph, the authors suspected that the canal preparation for the post and the post placement had perforated the root at the base of the post.

Clinical Implications. The authors used a combined surgical and orthograde approach with a biocompatible restorative material and a clear, plastic light-transmitting post to repair the iatrogenic perforation.

CASE REPORT

REPAIRING IATROGENIC ROOT PERFORATIONS

with a variety of different materials including calcium hydroxide, dental amalgam, Cavit (ESPE), composite resin, glass ionomer cement, freeze-dried bone and tricalcium phosphate.8,14

Resin ionomer—a new class of restorative material—has been used recently to treat successfully iatrogenic perforations and resorptive defects.15,16

Dragoo described using dual-cure fluoride-releasing adhesive restorative materials. He reported that the resin ionomer had properties that made it an acceptable material to restore subgingival lesions. These properties included but were not limited to histologic evidence of biocompatibility, dual-cure polymerization, adhesion to dentin and cementum, fluoride-releasing, radiopacity, compactness, surface hardness, insolubility in oral fluids, absence of microleakage, low coefficient of thermal expansion and low polymerization shrinkage.

Dragoo described having the most predictable clinical success when using a specific dual-cure resin ionomer—Geristore (DenMat). He demonstrated histologic evidence of Geristore’s healing ability and connective-tissue adherence in several cases.15,16 Resillez-Urisote and colleagues12 reported using Geristore in the successful treatment of a mechanical root perforation. Sixteen months after the perforation repair, the tooth was healthy and functional. Roth17 described the successful management of two cases that involved iatrogenic perforations of endodontically treated teeth with Geristore.

When sealing a root perforation that has limited access from within the root canal or pulp chamber, how to properly manage the restorative material becomes a problem. In these cases, a combined surgical and nonsurgical approach can be used.

In the following case report, we present a novel approach for sealing and restoring a root perforation.

CASE REPORT

A 28-year-old male patient came to the emergency clinic at the University of Maryland at Baltimore School of Dentistry with a chief complaint of “swelling and pain in the upper jaw.” The patient had not had routine dental care for approximately two years at which time he had his maxillary anterior teeth restored with composite resin and a post placed in his maxillary right lateral incisor.

We conducted an intraoral examination and found localized swelling in the maxillary facial vestibule with a more pronounced swelling adjacent to the maxillary right lateral incisor. There were no probing depths greater than 3 millimeters, and the inflamed areas were consistent with a diagnosis of moderate gingivitis. The examination also revealed that the incisor was extremely sensitive to palpation and percussion.

We took a periapical radiograph that revealed evidence of a circumscribed radiolucent lesion associated with the distal midroot area and a periapical radiolucency (Figure 1). The tooth had a history of endodontic treatment and had been restored with a post-retained composite resin.

Based on the radiographic evidence, we suspected that the canal preparation for the post and the post placement had perforated the root at the base of the post.

We made a diagnosis of previous root canal therapy and chronic periradicular periodontitis with symptoms combined with lateral root perforation. We gave the patient two treatment options. The first was a combined surgical and nonsurgical intervention for removing the post, sealing the perforation, performing an apicectomy, and restoring the tooth. The second was extracting the
incisor; we visualized the surgical site using a surgical microscope. Then we enucleated the granulation tissue in the distolateral and apical areas of the maxillary right lateral incisor with a curet and exposed the perforation site using a bone bur.

Before preparing the canal for bonding, we fitted a Luminex Light-Transmitting Post (Dentatus) to the root canal. At the perforation site, we verified that the post was 2 to 3 mm short of it on the distal root surface. We marked the post using an endodontic stopper and removed it.

We etched, rinsed and dried the internal aspect of the root canal, taking care to evacuate both the root canal and the perforation site of the rinsed phosphoric acid enchant. A multiple component A+B primer dentin bonding agent was applied in both the canal and the perforation site using a microapplicator, which we used because it

The ultrasonic energy was transmitted down the length of the post causing the cement to disintegrate and the post to loosen.

From the canal, there was evidence of purulence and hemorrhagic drainage from the access opening. As the patient was not anesthetized, he reported immediate relief. We irrigated the root canal with sodium hypochlorite. When there was no longer evidence of drainage, we dried the root canal with paper points. Because of the amount of drainage and swelling, we decided to wait at least a week before attempting

Phase 1. At the emergency visit, we isolated the lateral incisor with a rubber dam. We created a lingual access opening to expose the post so that it could be retrieved. We successfully used an endodontic ultrasonic unit to remove the post. (The use of ultrasonics to successfully remove posts and silver points has been well-documented.18-20 The mechanism for post removal using ultrasonics is the physical disintegration of the post luting agent by the high-energy ultrasonic vibrations of 50,000 counts per second. To loosen the post so that it can be retrieved, the ultrasonic tip is moved around the periphery of the post and cuts through the cement.) After running the tip around the accessible areas of the post, we left it in place on the exposed end of the post for approximately two minutes. The ultrasonic energy was transmitted down the length of the post causing the cement to disintegrate and the post to loosen. We then retrieved the post with a hemostat (Figure 2).

When we removed the post from the canal, there was evidence of purulence and hemorrhagic drainage from the access opening. As the patient was not anesthetized, he reported immediate relief. We irrigated the root canal with sodium hypochlorite. When there was no longer evidence of drainage, we dried the root canal with paper points. Because of the amount of drainage and swelling, we decided to wait at least a week before attempting

Phase 2. One week later, the patient returned to the endodontic clinic and had no evidence of swelling; the maxillary anterior area, however, was sensitive to both percussion and palpation. We anesthetized the area and performed a combined surgical and orthograde approach to sealing the perforation. We placed a calcium hydroxide paste into the canal to act as an antimicrobial agent, sealed the access opening with a dry cotton pellet and covered it with a temporary filling material.

Before preparing the canal for bonding, we fitted a Luminex Light-Transmitting Post (Dentatus) to the root canal. At the perforation site, we verified that the post was 2 to 3 mm short of it on the distal root surface. We marked the post using an endodontic stopper and removed it.

We etched, rinsed and dried the internal aspect of the root canal, taking care to evacuate both the root canal and the perforation site of the rinsed phosphoric acid enchant. A multiple component A+B primer dentin bonding agent was applied in both the canal and the perforation site using a microapplicator, which we used because it
light-cured the resin ionomer at this site for one minute. Then we used the light to continue to photopolymerize the Geristore within the canal by placing the light probe at the coronal end of the Luminex post and light-curing it for two minutes. Because Geristore is a dual-cure resin restorative material, photopolymerization allowed for snap set of the restoration at all available sites.

We used a composite resin finishing bur to remove excess resin ionomer at the perforation site. Then we thoroughly rinsed the site with saline solution to remove any excess resin that remained after finishing of the root surface.

After the lateral perforation was sealed, we performed the apicoectomy by exposing the apical end of the root with a bone bur and resected the apical 3 mm of the root. The root end was prepared using an ultrasonic tip. We completed a retrofill using Geristore following the same adhesive procedure described previously (Figure 4).

The flap was replaced and sutured; no surgical dressing was used. We easily removed the Luminex post, which does not bond to the resin ionomer, from the canal with a hemostat. The access opening was restored using a cotton pellet and temporary filling material. The post space created by the Luminex post allowed for permanent post

Figure 3. Fitting the clear Luminex Light-Transmitting Post (Dentatus) after injection of Geristore (Den-Mat).

Figure 4. Geristore (Den-Mat) was used to complete an apical retrofill and sealed perforation site (arrows).

Figure 5. Radiograph immediately after surgery.
noted radiographic evidence of healing at both surgical sites at the one-year recall visit (Figure 6).

DISCUSSION

Subosseous root perforations can be difficult to treat. In many cases, the prognosis of these teeth, even with surgical and restorative treatment is guarded. In this article, we present a novel surgical and orthograde approach to the treatment of a mechanical root perforation. The choice of material used to restore and seal root perforations should be based on sound clinical judgment. We chose to use Geristore based on favorable clinical reports of biocompatibility.22

Also, because we needed to control the placement of the resin ionomer and to place a post to retain the composite resin core, we chose Luminex, which allowed all of the necessary requirements to be fulfilled. The use of the Luminex post for routine restoration of endodontically treated teeth has been described.21 In fact, Saupe and colleagues have reported the use of a light-transmitting post to polymerize composite resin in a root canal and then to restore the root canal with a post that demonstrated root reinforcement.

CONCLUSION

This case report presents the successful treatment of a mechanical root perforation using a surgical approach to visualize the defect. The use of a plastic light-transmitting post created a new “root canal” that was later used for the placement of a post and subsequent ceramic crowns to successfully restore the teeth. At the one-year recall appointment, we noted that the lesion had healed. Further investigation is indicated to provide long-term data on the use of this technique.

REFERENCES